Polyhedra and polyhedral surfaces
- both bounded by planar faces
- polyhedron 多面体 由 平面面+直线+格点 组成
- polyhedral surface 多面体曲面 由 平面面组成,不一定构成立体,可以存在边界点、边
Pyramids and prisms 棱锥和棱柱
- pyramids 棱锥:底为多边形,侧面为三角形
- prisms 棱柱:底和顶通过平移得到,特殊为直棱柱(right prisms)
- obelisk 方尖塔:由截棱锥(pyramidal frustum)组成
Platonic solids 柏拉图固体
- 柏拉图固体:每个面为全等的正则多边形,每个格点处有相同面数
- 只有5种:tetrahedron四面体, hexahedron=cube六面体, octahedron八面体, docecahedron十二面体, icosahedron二十面体
- 凸多面体:连续边角和< 360°
- 4D空间:6个多面体满足Platonic solids
- 5D及以上空间:3个满足,分别是hyercube, simplex, cross polytope
- 每个面都是全等三角的凸多面体:有8种,其中三个是tetrahedron, octahedron, icosahedron
Properties of Platonic solids
- Euler formula 欧拉公式 : v-e+f=2
- 柏拉图固体及其对偶dual:每个柏拉图固体的面中点作为格点构成另外柏拉图固体,称为固体的对偶
- 与柏拉图固体相关的球体:circumsphere外接球,insphere内切球,过边中点的球体
- 对称性质:1. 只有一种面;2. 所有边长相等;3. 临近面的二面角相等;4.所有格点棱锥全等
The goden section黄金分割比
- golden section=golden ratio=divine proportion
- $\varphi$= (1+$\sqrt5$)/2~=1.618033989; $\varphi^2-\varphi-1=0$
- The golden rectangel 黄金矩形:c:d=(c+d):c
- The Fibonacci spiral 斐波那契螺旋线:c:d=d:(c-d)
Archimedean solids 阿基米德固体
- 特性:1.所有边长相等;2.所有格点全等;3.每个面为正则多边形但是彼此不全等
- 由两种切割柏拉图固体角的办法变化得来:1.生成的正则多边形与原来边数相同;2.生成的正则多边形边数是原来的两倍
- 阿基米德固体13种(除棱柱和反棱柱外):truncated tetrahedron, truncated cube, truncated octahedron,truncated docecahedron,truncated icodahedron……
- prisms棱柱和anti-prisms反棱柱也是阿基米德固体
- prisms:上下地面为全等正则多边形,侧面是正方形
- anti-prisms:上下地面为经过旋转的全等正则多边形,侧面是三角形
Geodesic spheres 测地球
- 测地球:所有格点位于同一球面的大圆上
- 生成方法1:成指数(1,4,9,16,…)细分(subdivide)二十面体表面,再投影到外接球;得到三角形数目=$20\cdot(k+1)^2$.
- 生成方法2:每一个三角形细分成4个全等三角形,再投影到外接球; 得到三角形数目=$20\cdot4^k$.
Space filling polyhedra 空间填充多面体
- cube立方体是唯一的柏拉图固体能完全填充3D空间
- 存在其他多面体完全填充空间
- 可以使用非全等多面体实现,但是复杂
Polyhedral surfaces
- If a smooth surface is approximated by a polyhedral surface we also speak of a discrete surface.
- 可以使用planar quadrilateral平面四边形实现对柱面和锥面的离散化
- 使用triangles三角近似freeform自由形曲面比平面多边形更容易
- The design of polyhedral freeform surfaces with planar faces other than triangles is a difficult task that is a topic of current research.