- Important basic transformations are congruence transformations (translation, rotation,
reflection), which preserve all lengths and angles occurring on an object. 平移、旋转、对称三个基本变换保长+保角。
Translation, Rotation, and Reflection in the Plane 平面上的平移、旋转、对称变换
- The congruence transformations are also called isometries. 全等变换=等距变换
- Direct congruence transformation 直接全等变换:平移、全等、自变换
- Oppositely congruence transformation 相对全等变换:反射、glide reflection
- Uniform Scaling 均匀放缩
由一个放缩比例$f_x$ 或 $f_y$决定
- Independent Scaling 独立放缩
两个放缩比例$f_x$,$f_y$决定,特别地,$f_xf_y=1$ 为报面积变换
- Shear transformation
改变物体形状,但是保面积
Tilings ~ Tessellation 贴图
- regular tessellations 规则贴图
只有三种:triangles三角、squares四边、hexagons 六边
- semi-regular tessellations 半规则贴图
由非单一正则多边形组成,每个节点有相同的组合形式;共8个
- Translations, rotations, reflections, and glide reflections are the only transformations that can be applied on patterns without changing the pattern.
- Nonlinear transformation 将直线映射成圆
- reflection along a circle:inversion ~ division 逆运算
- Möbius transformations. The transformation $z2 = \frac{r^2}{\bar{z}}$ is a special case of so-called Möbius transformations, which are defined by $z_1 = \frac{a\cdot \bar{z}+b}{c\cdot \bar{z}+d}$ or
$z_1 = \frac{a\cdot {z}+b}{c\cdot{z}+d}$
with a, b, c, and d as arbitrary complex numbers.
- Circles are mapped onto straight lines or circles. 所有Möbius变换将圆映射成圆
- The intersection angle of two curves is preserved. 保角变换
- If we waive the circle-preserving property but insist on the preservation of angles, we have the set of conformal transformations.