Curves 曲线
- All points of a circle or a conic section lie in a plane. These curves are called planar curves, in contrast to spatial curves such as helixes. 如下图,维也纳Karl教堂两个柱子上的纹路,就是螺旋线:
- Points of the curve with a uniquely defined tangent are called regular points. All points where the tangent vector $c’(t)$ is a non-vanishing vector are regular points. Curve points where $c’(t)$ is the zero vector $o$ are singular points. 下图是奇异点、螺旋线的切线与平面成定角:
-
discrete curve 离散曲线:The polygon is also called a discrete curve. In many practical computations, curves are actually polygons (i.e., discrete curves). 离散曲线就是折线。
-
下图是椭圆线的密切圆中心轨迹即evolute、Frenet标架,osculating circle密圆、principle normal主法向量,binomial副法向量:
- 从切平面方向(与密切平面垂直方向)的投影是几乎光滑曲线(蓝线),密切平面方向在yz平面投影有拐点inflection point(红线),在xz平面有尖点cusp(绿线):
Conic sections 锥部分
- implicit representation隐式表示:$a·x^2 + b·x·y + c·y^2 + d·x + e·y + f = 0.$
- ellipse 椭圆: $b^2·x^2 + a^2·y^2 – a^2·b^2 = 0$; 找椭圆的密切圆圆心构图方法:
- hyperbola 双曲线:$b^2·x^2 – a^2·y^2 – a^2·b^2 = 0$;
- parabola 抛物线:$x^2 – 2py = 0.$ 抛物线的evolute:
Surfaces 曲面
- 参数曲面:从平面区域投影到三维空间:
- 空间曲线切线生成的曲面:
- Whitney’s umbrella: y轴正方向处有两个切平面,则上面的每个点都是奇异点; Labs septic 曲面含有99个奇异点:
- 锥面点:elliptic surface point, hyperbolic surface point, parabolic surface point:
Intersection curves of surfaces 曲面的交线
- conic intersection 锥面相交形成的建筑vault穹顶:
If two rotational cylinders or cones possess a common inscribed sphere, their intersection curve decomposes into a pair of conic sections or into a conic section and a single ruling.